All you need to know about...

UNICORN Affordable Quantum Communication for Everyone

Affordable Quantum Communication for Everyone

Revolutionizing the Quantum Ecosystem from Fabrication to Application

Hannes Hübel, AIT Austrian Institute of Technology

EQTC 2019, Grenoble

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 820474.

Quantum Communication Today

Aim: Information-theoretic Security (ITS)

- Quantum Key Distribution (QKD): security based on the laws of nature, therefore "quantum-safe" early demonstrations (Vienna, Tokyo, Battelle)
- Classical Post-Quantum algorithms: computationally hard problems, no guarantee for ITS as quantum algorithms evolve

UNICORN

Quantum Communication Today

Current Roadblocks for a Practical Introduction:

- 1.) ICT infrastructure will not change to accommodate quantum network functions. Need to merge the striking benefits of quantum technology with highly advanced telecom technologies ("co-existence").
- 2. Powerful quantum applications need powerful yet cost-effective components.
 The Second Quantum Revolution is only possible when it follows a success story such as that of

microelectronics, which lead to the Information Age.

Positioning within Quantum Flagship

Basic Science

28.02.2019

- 1.) Develop value-added InP, CMOS and polymer quantum-optic communication component technology with reproducible performance.
 - Quantum-grade monolithic InP integration
 - High-efficiency silicon photon detection
 - Low-cost industry-qualified planar polymer lightwave circuits

- 2.) Shoehorning breadboards into chips Develop a quantum System-on-Chip (QSoC) methodology that enables low-cost assembly and packaging.
 - Hybrid integration of "best-of-breed" components
 - Efficient interposer-to-fiber interfaces
 - Pump source integration
 - RF and thermal features

- UNIQORN
- 3.) Demonstrate the power of the technological food-chain through realization of feature-rich, scalable key sub-systems for optical quantum communications.
 - Heralded and polarization / time-bin entangled photon pair sources
 - 1550 nm up-conversion DV receiver
 - Differential Phase Shift DV transmitter
 - Entangled squeezed light source and homo-/heterodyne CV receiver
 - Quantum random number generator (QRNG)
 - Programmable Einstein-Podolsky-Rosen (EPR) node

The demonstration of **feature-rich and scalable quantum circuits** in the form of QSoC is a significant step forward in the fabrication of a broad range of DV and CV quantum communication sub-systems with reduced size and cost – following the same paradigm of integrated microelectronics during the late 20th century.

- 4.) Deployable system performance and novel network functionalities.
 - **System integration**, e.g. secure key rate >1 kb/s using <u>pluggable</u> QKD optics
 - Network integration
 - introduction of space as a new dimension of multiplexing
 - software defined impairment mitigation and resource optimization
 - programmable Quantum Whitebox

- 5.) From quantum fab to quantum app: Demonstration of low-cost quantum links and novel end-user quantum applications beyond QKD in lab evaluation and field scenarios.
 - Quantum-secured Internet-of-Things (QIoT)
 - One-time programs for cloud-based quantum processing
 - Secure database access through oblivious transfer
 - QRNG as a seed for NIC-integrated randomness engine

UNIORN

The tight integration of quantum protocols in commercial network equipment and the network-oriented investigation of applicability aspects provides the credential to generate exploitable assets.

TRL Positioning and Time-to-Market

UNIQORN

UNIQORN relies on the integration of innovative quantum-optical building blocks (sources, transmitters, detectors) that are based on well-established InP/polymer/CMOS technologies, offering the optimum balance between innovation and risk/maturity/time-to-market: **quantum revolution through technological evolution**.

Commercialization Path:

- Early adoptions of services and components, e.g.:
 - quantum-grade PIC foundry
 - EDA tools for quantum tech - CMOS SPADs
- 2-3 years after project end: first qSoC solutions

Events

October: Kick-off meeting at NTUA (Athens) December : ICT2018 (Vienna) January: 1st technical meeting at HHI (Berlin)

Thank you for your attention!

CONTACT

Scientific Coordinator:

Dr. Hannes Hübel AIT Austrian Institute of Technology

➢ hannes.huebel@ait.ac.at
 ☎ +43 50550 4453

Web Presence: (quantum-uniqorn.eu

Social Media:

UNIQORN Quantum