Fabian Laudenbach¹, Michael Hentschel¹, Moritz Kleinert², <u>Hauke Conradi²</u>, Hannes Hübel¹

1 AIT Austrian Institute of Technology GmbH, Center for Digital Safety & Security, Information Management, Giefinggasse 4, 1210 Vienna, Austria. 2 Fraunhofer Heinrich-Hertz-Institut, Photonics Components Department, Einsteinufer 37, 10587 Berlin, Germany. fabian.laudenbach@ait.ac.at

hauke.conradi@hhi.fraunhofer.de

INTRINSIC ENTANGLEMENT GENERATION ON POLYMER-BASED INTEGRATED CIRCUIT

HHI

INTRODUCTION

We present a novel way to generate polarisation-entangled photon pairs which is both, highly efficient and simplistic in its experimental implementation. Consisting only of a single unidirectionally pumped nonlinear crystal, our source is predestined for miniaturisation and photonic integration, as we show by presenting a polymer-based integration

QUASI-PHASE-MATCHING & COLLINEAR DOUBLE-DOWNCONVERSION

PHASE-MATCHING BY PERIODIC POLING

methodology of this source.

POLYMER-BASED PHOTONIC HYBRID INTEGRATION PLATFORM POLYBOARD

- Single-mode waveguides optically transparent from 450 nm to 1650 nm with low birefringence
- Thin-film elements for temp.-insensitive polarization and wavelength routing (e.g. dichroic mirrors, polarization beam splitters, half-wave plates)
- On-chip free-space sections with collimated beams created by GRIN lenses for insertion of bulk optical components like magneto-optic or nonlinear-optic crystals

Integrated polarizing beam splitter with 0.7 dB total loss and 50 dB extinction ratio.

with
$$\Delta k = k_p - k_B - k_R$$

Quasi-phase-matching (QPM) is a method to ensure constructive interference of SPDC-generated radiation by periodic alternation of the nonlinear coefficient d. (Figure from Saleh, Teich, "Fundamentals of photonics," John Wiley & Sons, 2007).

COLLINEAR DOUBLE-DOWNCONVERSION

The phase-mismatch vector $\Delta k = k_p - k_B - k_R$ can be positive or negative.

One periodically poled crystal with periodicity Λ can provide phasematching for **two** SPDC processes simultaneously if $|\Delta k_+| = |\Delta k_-|$.

Schematic (a) and top view of fabricated on-chip free space section (b). Cross section of etched U-groove with indicated GRIN lens position (c).

INTRINSIC ENTANGLEMENT

 $\lambda_{H_{+}} \lambda_{s} \lambda_{H_{-}}$

When **two** QPM amplitudes, $|\psi_+|$ and

 $|\psi_{-}|$ (one for Δk_{+} and one for Δk_{-}),

overlap with $|\mu|$, **two** SPDC processes

are enabled, with joint-spectral-intensity

distributions JSI_+ and $JSI_- \rightarrow$ collinear

MICRO-OPTICAL BENCH FOR QUANTUM TECHNOLOGY – THE UNIQORN APPROACH

Miniaturization of already demonstrated free-space optical setup by onchip integration of ppKTP crystal on the PolyBoard platform, via a pair of GRIN lenses.

$$\begin{split} \Psi \rangle &= \left(\alpha \widehat{a}_{H,\lambda_B}^{\dagger} \widehat{a}_{V,\lambda_R}^{\dagger} + \beta \widehat{a}_{V,\lambda_B}^{\dagger} \widehat{a}_{H,\lambda_R}^{\dagger} \right) \Big| 0,0 \rangle \\ &= \left(\alpha \Big| H_B V_R \right\rangle + \beta \Big| V_B H_R \rangle) \end{split}$$

double-downconversion.

By careful design, the two SPDC processes can be arranged such that they generate photon pairs of the same wavelength but orthogonal polarisation.

PolyBoard GRIN-Lens SMF bulk-ppKTP HWP PBS SPADs 🔝 🔝 .

Schematic of integrated SPDCsource with on-chip BB84-protocol

On-chip integration of GRIN-lensintegrated nonlinear optical crystal.

detection.

FURTHER READING

- F. Laudenbach, S. Kalista, M. Hentschel, P. Walther, H. Hübel, A novel single-crystal & single-pass source for polarisation- and colour-entangled photon pairs, Sci. Rep. 7, 7235 (2017).
- F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, H. Hübel, Numerical Investigation of Photon-Pair Generation in Periodically Poled MTiOXO₄ (M=K, Rb, Cs; X=P, As), Phys. Rev. Appl. 8, 24035 (2017).
- M. Kleinert, D. de Felipe, C. Zawadzki, W. Brinker, J. H. Choi, P. Reinke, M. Happach, S. Nellen, M. Möhrle, H.G. Bach, N. Keil, M. Schell, Photonic integrated devices and functions on hybrid polymer platform., Physics and Simulation of Optoelectronic Devices XXV. Vol. 10098. International Society for Optics and Photonics, 2017
- H. Conradi, D. de Felipe, M. Kleinert, M. Nuck, C. Zawadzki, A. Scheu, N. Keil, M. Schell, High Isolation Optical Isolator: A new Building Block for PolyBoard Photonic Integrated Circuits, 2018 European Conference on Optical Communication (ECOC). IEEE, 2018.

ACKNOWLEDGEMENTS

This work has been funded by the European Union's Horizon 2020 research and innovation programme through the Quantum-Flagship project UNIQORN (no. 820474)