

AFFORDABLE QUANTUM COMMUNICATION FOR EVERYONE: REVOLUTIONIZING THE QUANTUM ECOSYSTEM FROM FABRICATION TO APPLICATION

F. Setaki, G.Lyberopoulos, K. Filis, COSMOTE Mobile Telecommunications S.A

INFOCOM Athens, 26.11.2019

https://www.infocomworld.gr

Affordable Quantum Communication for Everyone: Revolutionizing the Quantum Ecosystem from Fabrication to Application

Affordable Quantum Communication for Everyone

Call: H2020-FETFLAG-2018-03 (QComm.), RIA

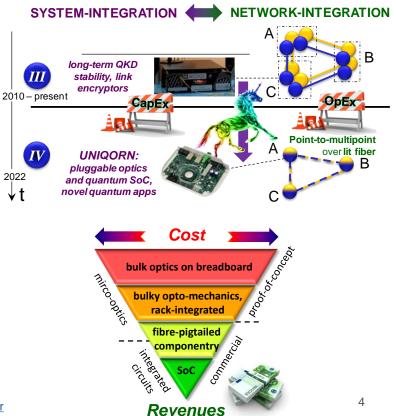
Project nº: 820474

Countries: AT (Coord.), DE, DK, NL, IL, EL, IT, UK, BE

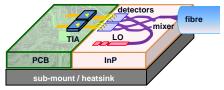
Partners: 17 (with 8 Univ., 3 RTO, 3 SME, 3 Lrg.Ent.)

Funding: 10 M€ over duration of 36M

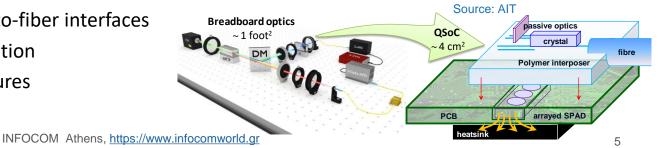
Focus: Ubiquitous Quantum Communication


- Quantum-enhanced communication protocols: information-theoretically secure key exchange, quantum random number generation and secure multiparty computation
- High technological readiness at the device level: Achieve cost-effectiveness through integrated, deployable quantum-photonic solutions

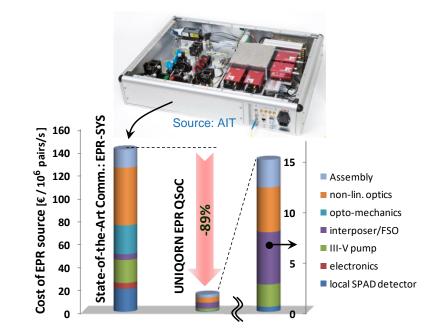
Drivers: The Challenges for Practical Deployment


- ICT infrastructure will not change to accommodate quantum network functions. Need to merge the striking benefits of quantum technology with highly advanced telecom technologies ("co-existence").
- 2. Powerful quantum applications need powerful yet cost-effective components.

The Second Quantum Revolution is only possible when it follows a success story such as that of microelectronics, which led to the Information Age.



Project Objectives (1/5)


- 1. Develop value-added InP, CMOS and polymer quantum-optic communication component technology with reproducible performance.
 - Quantum-grade monolithic InP integration
 - High-efficiency single photon detection
 - Low-cost industry-qualified planar polymer lightwave circuits

- 2. Shoehorning breadboards into chips Develop a quantum System-on-Chip (QSoC) methodology that enables low-cost assembly and packaging.
 - Hybrid integration of "best-of-breed" components
 - Efficient interposer-to-fiber interfaces
 - Pump source integration
 - RF and thermal features

Project Objectives (2/5)

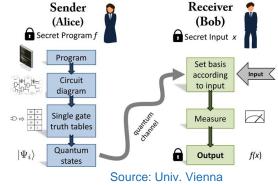
UNIQORN expects an up to 89% cost improvement with respect to state-ofthe-art commercial products through a well-orchestrated methodology and process flow used for QSoC fabrication, which drives higher production throughput at lower cost.

Objectives (2/5)

- 3. Demonstrate the power of the technological food-chain through realization of feature-rich, scalable key sub-systems for optical quantum communications.
 - Heralded and polarization / time-bin entangled photon pair sources
 - 1550 nm up-conversion DV receiver
 - Differential Phase Shift DV transmitter
 - Entangled squeezed light source and homo-/heterodyne CV receiver
 - Quantum random number generator (QRNG)
 - Programmable Einstein-Podolsky-Rosen (EPR) node

Source: Fraunhofer/HHI

The demonstration of **feature-rich and scalable quantum circuits** in the form of QSoC is a significant step forward in the fabrication of a broad range of DV and CV quantum communication sub-systems with reduced size and cost – following the same paradigm of integrated microelectronics during the late 20th century.


Objectives (4/5)

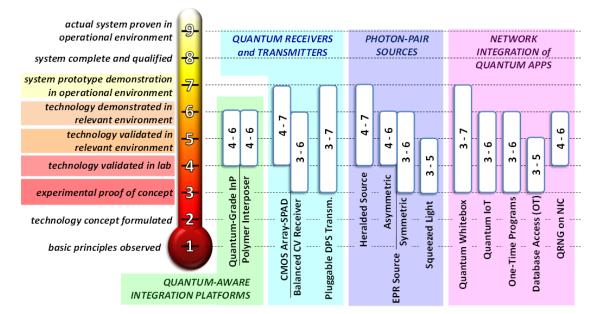
- 4. Deployable system performance and novel network functionalities.
 - **System integration**, e.g. secure key rate >1 kb/s using <u>pluggable</u> QKD components
 - Network integration
 - introduction of space as a new dimension of multiplexing
 - software defined impairment mitigation
 - and resource optimization
 - programmable Quantum Whitebox

Objectives (5/5)

- From quantum *fab* to quantum *app*: Demonstration of low-cost quantum links and novel end-user quantum applications beyond QKD in lab evaluation and field scenarios.
 - Quantum-secured Internet-of-Things (QIoT)
 - One-time programs for cloud-based quantum processing
 - Secure database access through oblivious transfer
 - QRNG as a seed for NIC-integrated randomness engine

The tight integration of quantum protocols in commercial network equipment and the network-oriented investigation of applicability aspects provides the credentials to generate exploitable assets.

Multi-Disciplinarity is Key to Success!


- Quantum engineers with strong roots in theory & experiment
- RTOs turning basic science into applicable technology for years
- Photonic and electronic design of integrated circuits
- Design automation and simulation
- Assembly and Packaging
- Telecom system integration
- Industrial End-User perspective

26.11.2019

TRL Positioning and Time-to-Market

UNIQORN relies on the integration of innovative quantum-optical building blocks (sources, transmitters, detectors) that are based on well-established InP/polymer/CMOS technologies, offering the optimum balance between innovation and risk/maturity/time-to-market: **quantum revolution through technological evolution**.

Commercialization Path:

- Early adoptions of services and components, e.g.:
 - quantum-grade PIC foundry
 - EDA tools for quantum tech
 - CMOS SPADs
- 2-3 years after project end: first qSoC solutions

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 820474.

INFOCOM Athens, https://www.infocomworld.gr