Title
Compact, low-threshold squeezed light source
Authors
J. Arnbark, C. S. Jacobsen, R. B. Andrade, X. Guo, J. S. Neergaard-Nielsen, U. L. Andersen, T. Gehring
Abstract
Strongly squeezed light finds many important applications within the fields of
quantum metrology, quantum communication and quantum computation. However, due to the
bulkiness and complexity of most squeezed light sources of today, they are still not a standard tool
in quantum optics labs. We have taken the first steps in realizing a compact, high-performance
1550 nm squeezing source based on commercially available fiber components combined with
a free-space double-resonant parametric down-conversion source. The whole setup, including
single-pass second-harmonic generation in a waveguide, fits on a 30 cm×45 cm breadboard and
produces 9.3 dB of squeezing at a 5 MHz sideband-frequency. The setup is currently limited
by phase noise, but further optimization and development should allow for a 19″ sized turn-key
squeezing source capable of delivering more than 10 dB of squeezing.
Venue
Optics Express, vol 27
[Download]